
EECS 470 Final Project Report
Hudson Hall

University of Michigan
hallhu@umich.edu

Owen Park
University of Michigan
owenpark@umich.edu

Zehua Wang
University of Michigan
oscarhua@umich.edu

Weijia Wu
University of Michigan
weijiawu@umich.edu

Enming Xu
University of Michigan
enmingxu@umich.edu

Abstract—Our project is an implementation of an R10K-style
processor based on the RISC-V ISA. Our processor consists
of two “versions”: one for single-threaded programs and the
other for simultaneous multithreading (SMT). We have designed
both versions to be as efficient as possible, trying to achieve the
best clock period with the lowest cycles per instruction (CPI)
possible. Our single thread version is 2-way superscalar, capable
of fetching, dispatching, issuing, and retiring two instructions
per cycle. It has a clock period of 7.85ns and an average CPI of
1.05. Our SMT processor is capable of fetching four instructions,
dispatching and issuing two instructions, and retiring four
instructions per cycle. It has a clock period of 9.34ns and an
average CPI of 1.14. This report covers our architecture design,
components, and advanced features we implemented in greater
detail, followed by an analysis of how each feature affected the
performance of our system.

I. INTRODUCTION

A large portion of our semester was spent designing and
implementing a fully functional and well-optimized single
thread processor. From our base design, we would then make
the architectural jump to SMT. This report will follow simi-
larly to our engineering process. It will begin by covering the
base features and architecture of our single thread processor.
We will then cover the advanced features and improvements
we made to increase single-threaded performance. Finally, it
will conclude with the changes made to make SMT fully
functional.

II. SINGLE THREAD DESIGN

This section will examine the design and implementation
of our single thread processor. We managed to achieve a
synthesized clock period of 7.85 ns with an average CPI of
≈1.05. The critical path is each stage in mult.sv.

A. Design Overview

We have designed an out-of-order 2-way superscalar R10K-
style processor, with advanced features to improve perfor-
mance such as a tournament branch predictor, instruction
prefetching, a non-blocking 4-way set associative data cache,
early tag broadcast, a return address stack, and a load buffer-
/store queue with internal forwarding. A high level overview
of the flow of data in our processor can be seen in [2, Fig. 1].

B. Instruction Fetch

Since we are 2-way superscalar, we fetch two instructions
(or one word) at once which conveniently fits within the
one block of data that our memory module can provide
in a cycle. Once an instruction is fetched, the next PC is
determined based on the instruction type. For conditional
branches predicted not taken and non-branch instructions, the
next PC will be PC+8. Conditional branches predicted taken
and jal instructions will change the next fetch PC to current
PC + instruction immediate. jalr instructions will use the top
of the return address stack or the BTB output as the next PC
to fetch, depending on whether the instruction is a function
return or a function call.

C. Instruction Cache

We have implemented an instruction cache (Icache) with a
victim cache. Our Icache is 32 lines direct-mapped, with a
4-line fully associative victim cache. It is also non-blocking,
and can continuously prefetch to achieve a low latency for the
next instruction fetch.

D. Branch Target Buffer

Our branch target buffer (BTB) is a 2-way set-associative
64-line specialized cache used for enhancing the efficiency of
jalr instructions. The branch target buffer module will output
the predicted target address to the fetch module for the jalr
instructions. We have chosen to update the BTB on instruction
retire.

E. Reservation Station

Our reservation station (RS) has 16 entries and is imple-
mented as an array of RS entries. The RS will allocate new
entries for dispatched instructions if no structural hazards are
present and will issue instructions that are ready to go. The
RS also watches the Common Data Bus (CDB) to identify if
renamed registers have received new data, and will issue them
if they resolve all dependencies and “wake up.” A priority
selector for each functional unit selects from these instructions.
Our processor is capable of issuing as many instructions as
possible, limited only by the number of woken-up instructions
and functional unit availability.

1



Fig. 1. Detailed single thread processor design.

F. Reorder Buffer

Our reorder buffer (ROB) has 64 entries and is implemented
as a circular buffer. Since we are 2-way superscalar, we keep
track of the head, head+1, tail, and tail+1. The ROB head
will move based on how many instructions we retire each
cycle, and the tails will move based on how many instructions
we dispatch each cycle. The ROB, along with the rest of our
processor, is capable of receiving zero, one, or two instructions
on dispatch. It is also capable of retiring zero, one, or two
instructions.

G. Register Alias Table and Retire Register Alias Table

Our Register Alias Table (RAT) and Retire Register Alias
Table (RRAT) are critical components for supporting out-
of-order processing as they handle register renaming so that
we can deal with data dependencies. We have 32 architected
registers and 96 physical registers. The RAT keeps track of the
mapping between architected and physical registers, as well as
the states of each architected register to send to RS. The RRAT
is only updated with values that have been retired. When a
branch misprediction occurs, the system needs to be nuked
and the RAT copies its data from the RRAT.

H. Physical Register File

Our physical register file (PRF) has 96 entries and includes
a free list to use for register renaming. A priority selector is
used to select a free physical register number (PRN) and on
dispatch, the free PRN assigned to the dispatched instruction
will be made not free. Upon instruction execution, the PRN
entry will be marked valid and its value will be updated.
Finally, when an instruction retires, the PRN entry that it
overwrote on dispatch will be made free.

III. ADVANCED FEATURES

A. 2-Way Superscalar

Our processor is 2-way superscalar, meaning it is able
to fetch, dispatch, issue, execute, and retire two instructions
in one cycle. This allows our processor to exploit more
instruction-level parallelism. Executing multiple instructions
in parallel helps reduce our clock per instruction greatly.

B. Early Tag Broadcast

We have implemented early tag broadcasts for our processor.
Without it, when the CDB broadcasts the physical register
number it writes to, the reservation station will first clock it

2



in, and on the next clock cycle, the instruction will be ready
to issue. By implementing early tag broadcast, the instruction
will be ready to issue in the cycle CDB broadcasts so that we
don’t need to wait one more cycle, helping to reduce CPI.

C. Instruction Prefetching

Given that we can only make one memory request each
cycle and we want to give load/store instructions priority,
we have to wait quite a few cycles if the Icache misses. To
improve this, we implemented instruction prefetching. For our
processor, we will prefetch as many instructions as possible
until the address for the prefetching has a conflict with the PC
requested by the fetch module in the Icache.

D. Non-Blocking 4-Way Set-Associative Data Cache

For the data cache (Dcache), we have implemented a
non-blocking, write-back, write-allocate, 4-way set-associative
cache. We have implemented miss status handling registers
(MSHR) for the Dcache so that we can continuously accept
loads when an outstanding miss occurs. We use pseudo least
recently used bits (LRU) for each set in Dcache.

When a load or store instruction is trying to access memory,
our processor will first check whether the access is a cache
hit. If it is a cache hit, we update our pseudo LRU bits and
dirty bits of the cache line accordingly. If it is a miss, then
the processor will go to MSHR entries to check whether there
is an MSHR hit. If MSHR hits, we append the access to the
MSHR entry. If MSHR misses, the Dcache will allocate an
MSHR entry for the memory access and record the requesting
load/store in the MSHR entry. When data comes back from
memory, Dcache will update the data according to all pending
stores, broadcast the updated data to all pending loads, and
write the updated memory block to Dcache.

E. Tournament Branch Predictor

We have implemented a tournament branch predictor for
improved branch prediction accuracy. We are using a 256-line
local predictor with 8 bits of local history, as well as a 256-
line gshare predictor with 8 bits of global history. Both the
local and gshare predictors have 2 bits for prediction state,
initialized to weakly not taken for local and weakly taken
for gshare. The tournament predictor has 32 selectors, all
initialized to weakly global. All predictors are updated when
a branch instruction retires, based on the retired PC in the
ROB entry for local and the current state of branches for
global. If both local and global were found to predict the same
result, then the tournament predictor is not updated. However,
if they differed, the tournament predictor would change to
reflect the correct prediction. The tournament branch predictor
sends a branch prediction to the fetch stage to determine the
predicted PC for the next instruction fetches, greatly reducing
the performance impact of branches if they are predicted
correctly.

F. Return Address Stack

The return address stack (RAS) exploits the fact that we can
tell whether a jalr instruction is a function call or a function
return for a C program by checking whether the destination
register is zero register or not. The implementation of RAS
makes the processor capable of predicting jalr target addresses
better and makes recursive function calls more efficient.

In the fetch stage, once we have fetched a jalr instruction
from memory, we will decide whether it is a function call or
a function return. For function calls, we will allocate an entry
in the RAS and increment the head of the stack. For function
returns, the fetch module will use the top of the RAS as the
next fetch PC and decrement the head of the stack.

G. Load Buffer and Store Queue

In our processor, we have implemented a load buffer (LB)
and store queue (SQ) with forwarding capabilities. Load
instructions will be dispatched to both the RS and LB. Once
all operands are ready, the load instruction can be issued and
obtain forwarding data from the SQ. Store instructions will
directly be appended to the tail of the SQ without entering the
RS because they must be executed in order.

In the LB, each entry records the stores that the load instruc-
tion can depend on. When the RS issues a load instruction,
the LB will send the calculated address and the size of the
load instruction to the SQ in order to get the forwarding data
back. Also, load instructions can obtain forwarding data when
store instructions retire.

When all store instructions that a load instruction is waiting
on are resolved and there is no forwarding data from the SQ,
the load instruction will access memory for data.

Store instructions will be appended to the tail of the SQ
when dispatched. Once the RS issues a load instruction, the
SQ will use the load address and output the store entries which
the load instruction is still possibly dependent on. Also, store
instructions will only access memory after it retires and is
the head of the SQ to make sure store instructions do not
change the memory speculatively and are executed completely
in order.

IV. SIMULTANEOUS MULTITHREADING DESIGN

Several changes were made to make the jump from our
single-threaded processor toward our SMT processor. The
following section highlights some components that underwent
significant change. In the end, we achieved a clock period of
9.34 ns with an average CPI of ≈1.14. The critical is the path
from alu.sv → CDB → instruction wake up in rs.sv → and
issue back to alu.sv.

A. Design Overview

From a high-level perspective, the design of our SMT
processor does not differ extremely from our single thread pro-
cessor. There are only two new structures necessary: a dispatch
arbiter to arbitrate which instructions from each thread should
be dispatched, and reservation sets which threads can use
to achieve synchronization (locks). Additionally, the Icache

3



was adapted to handle two concurrent threads requesting
instructions. Other than these additions, most of the changes
were simply expanding our existing modules to support taking
instructions from two threads and adding logic to distinguish
instructions from each thread. These structural changes can be
seen in [5, Fig. 2].

B. Fetch and Instruction Cache

For our SMT processor, the fetch module is almost identical
to the one in our single thread processor, except that we
now have two fetch modules for each thread which both will
request instructions from the Icache. The Icache is capable
of processing both requests at the same time and utilizes
a prefetch buffer for each thread (each holding up to 8
instructions) to further enhance performance. Upon a cache
miss, the Icache will go to memory for the instructions. It
will additionally start prefetching for that thread. While this is
occurring, the other thread is still able to fetch from the Icache,
hopefully still getting hits. In the case that both instructions
are in the “missed” state — either going to memory for the
missed instruction or for further prefetching — the Icache will
alternate between the two threads every cycle to prevent thread
starvation, prioritizing the thread that has just missed. Each
fetch module has its own instruction queue to store fetched
instructions.

C. Dispatch Arbiter

We now have a dispatch arbiter that sits between the decoder
and the out-of-order system. The dispatch arbiter is responsible
for taking up to four decoded packets (two from each thread)
and selecting up to two packets to send to the rest of the
system. The dispatch arbiter takes into consideration structural
hazards for each thread, as well as their instruction queue
availability when making the decision to dispatch. If possible,
it will try to dispatch one instruction from each thread. In
addition, there is extra logic implemented to prevent starving
by simply rotating priority in the event we have to make an
arbitrary decision to choose one thread over the other.

We attempted to make a more complex dispatch arbiter that
also takes branch mispredicts and Dcache misses into consid-
eration. However, the new dispatch arbiter didn’t provide better
scheduling for our processor. Hence, we decided to stick to
the original simple dispatch arbiter.

D. Control and Status Registers

To run multithreaded programs on our processor, we have
to add support for one instruction, which is csrr.

The CSR instructions stand for control and status registers.
Our SMT test programs uses our own custom C runtime file
which reads the value of mhartid, to determine which thread
the program should jump to. Since we only need to support
csrr for this case, we treat the csrr instruction as a normal
addi instruction, with the source register set to zero register,
and the immediate set to 0 or 1, depending on the hardware
executing the instruction.

E. Locks

In order to implement locks in the SMT processor, we added
support for two more instructions, which are load reserved
(lr.w), and store conditional (sc.w).

For locks, load reserved will reserve an address for its
thread, and store conditional will write success (0) to the
destination register only when the address it stores to is
reserved by a previous load reserved from the same thread
and is not invalidated by the other thread. Otherwise, it will
write an error code to the destination register, which is 1 in our
implementation. It will also invalidate the reserved address of
the other thread if the other thread reserved the same address
as the store instruction stores to. The main program we used
in testing was inc50.c which is shown in [4, Code 1]. The goal
of inc50.c is for each thread to increment the global counter
by 50. With load reserved and store conditional implemented,
we can achieve pseudo mutual exclusion in our hardware and
pass inc50.c, successfully incrementing counter to 100 with
two threads running at the same time.

F. Physical Register File

The PRF must be expanded to allow for two threads. Our
first approach with the PRF was to let both threads share the
same pool of 64 + 2 ∗ ROB Size = 192 physical registers.
This seemed like the obvious solution for us since this would
allow processes such as instruction wake up to be transparent
to thread information. By simply broadcasting the PRN on the
CDB, the proper instructions would get the data forwarded
correctly since every PRN was unique. This approach would
prove inefficient, greatly increasing the clock period of prf.sv
to 19 ns. Seeing this, we then pivoted to use two separate
PRF’s for each thread, each with 32+ROB Size = 96 physical
registers. Since each PRF would contain PRNs 0 through 95,

1#define LOAD_LOCK(lock, lock_status) asm volatile ("
lr.w %0, (%1)" : "=r" (lock_status) : "r" (lock)
);

2#define STORE_COND(lock, write, success) asm
volatile ("sc.w %0, %1, (%2)" : "=r" (success) :
"r" (write), "r" (lock));

3

4volatile int lock=0;
5volatile int counter = 0;
6int main(int argc, char * argv[])
7{
8int local_count=0;
9int fail;
10int in_use;
11while (local_count<50)
12{
13LOAD_LOCK(&lock, in_use);
14if (in_use) continue;
15

16STORE_COND(&lock, 1, fail);
17if (fail) continue;
18counter++;
19lock=0;
20local_count++;
21}
22return 0;
23}

Code 1. Program code of inc50.c for multithread testing.

4



Fig. 2. Detailed simultaneous multithreading processor design.

this meant that two in flight instructions from separate threads
could share identical destination and op PRNs. To prevent
conflicts, we simply send a bit along with PRN data so that
the system can distinguish which thread the PRN corresponds
to. This change resulted in a prf.sv clock period of 8 ns, a
much more reasonable time.

G. Expansion

Certain modules were expanded to accommodate two
threads. We now have two ROB’s, two RAT’s, two RRAT’s,
and two PRF’s. There is one ROB for each thread, which
means that our system is now capable of retiring four instruc-

tions (two from each thread’s ROB) every cycle. There is also
one RAT for each thread, which also means that we need two
RRAT’s. This is so that we can account for the additional
registers and rename each thread accordingly. The prf.sv and
rat.sv modules were expanded to handle both threads in the
existing modules. Under the hood, however, each contains two
separate tables for each thread (a detailed dive of prf.sv was
given in IV-F). The rob.sv and rrat.sv modules were simply
duplicated in cpu.sv with minimal logic to parameterize which
module corresponded with each thread. The reservation station
and functional units have no major architectural differences.
The largest change to each was handling proper squashing of

5



a certain hart.

V. WHAT WORKS

All of our major components synthesize and work exactly
as expected, and we successfully pass all test cases for single-
threaded performance. We managed to achieve a synthesized
clock period of 7.85 ns for our single-threaded processor with
an average CPI of ≈1.05.

For multi-threaded performance, our processor also worked
as expected, producing the correct output against ground truths
we created and synthesizing at a 9.34 ns clock period with an
average CPI of ≈1.14. We created ground truths by modifying
crt.s to run two different programs back to back in single
thread mode and then compared these with our multithreaded
output. During tests, we found that there would sometimes be
stack overflow when running certain large programs together,
but multi-threaded works if given enough stack space for every
program, and our modules do not appear to have any problems.
Also, we can successfully add up to 100 when running two
threads of inc50.c program [4, Code 1], as expected.

For our branch predictor, we tested global versus gshare to
use in a tournament predictor and found that gshare provided
better prediction accuracy, so we decided to use gshare in
our final version and did not include global. We also tried
speculatively updating our branch predictor but found that it
produced poor results and decided to update on retire.

VI. EVALUATION & TESTING

A. Branch Prediction

We were able to achieve an 84.00% branch prediction ac-
curacy for all programs and a 92.14% accuracy for larger pro-
grams (programs with greater than 4000 conditional branches).
Ultimately, our design featured a tournament branch predictor,
selecting from a local predictor with a local history table, and
a global gshare predictor.

We found that it was most optimal to update on retire
for both our local predictor and global predictor, although
the differences in execute and retire were minimal. We also
performed testing for speculatively updating our predictor,
although the implementation did not integrate well with our
current design, as fixing the speculative update was difficult.
Thus, in our single-threaded design, we elected to update our
entire predictor on retirement. However, in our multithreaded
design, we were able to update up to 4 instructions at once, due
to having two ROBs. Thus, to simplify the design, we decided
to update the predictor on execution for our multithread design.

We also tested the performance differences in initialization,
testing whether it was better to initialize our two-bit saturating
counter state to weakly taken (2’b10) or weakly not taken
(2’b01) and for our tournament selector, we tested weakly
global versus weakly local.

Lastly, we tested different sizes for our tournament predictor
but noticed that the size differences provided minimal differ-
ences in performance once the tournament selector reached
a sufficient size. It should also be noted that all tests were
performed without multithreading enabled.

In our testing, we first compared the overall prediction
accuracy, then we considered the prediction accuracy for large
programs only, shown in the table below in [6, Tab. 1].
Although we considered both these statistics, we ultimately
decided to prioritize branch prediction accuracy for large
programs, as we believed this would yield more conclusive
results.

A large part of our testing was performed to analyze the
most optimal way to update our predictor. First, we performed
individual tests on both the local predictor and global predictor,
updating them at different stages: (1) Updating speculatively
at fetch, (2) Updating on execution through the CDB, and (3)
Updating on retire.

a) Testing the Global Predictor: After testing different
global predictor schemes, we found that the best scheme for
the gshare predictor was to initialize to weakly taken, with
updating on execute or retire, as these two schemes produced
the best results. When updating speculatively, these yielded the
worst results, although we believe that under ideal conditions,
this may not be the case. It was difficult to accurately fix
wrong speculations, especially with the shift registers used for
branch history. In our speculative implementation for gshare,
we kept track of each branch instructions index in the gshare
table and then would fix the entry on retire if there was a
misprediction. However, we could not find an effective way
to update the global history shift register, which we believe
was a contributor to the poor results yielded by speculatively
updating the predictor. As a result, we decided to scrap the
idea of updating speculatively moving forward. The results
for the global predictor are shown in the table below [6, Tab.
2], showing the prediction accuracy for each scheme with all
of our testbenches and the prediction accuracy for just the
large programs in [6, Tab. 1].

TABLE I
LARGE PROGRAM CONDITIONAL BRANCH COUNT

Program Conditional Branches

dft 4376
insertionsort 10252
sort search 10588
outer product 10856
matrix mult rec 11364
alexnet 14743

TABLE II
PERFORMANCES OF DIFFERENT GLOBAL PREDICTOR SCHEMES

Global Predictor Scheme Overall Large

Weakly Taken, Update Speculatively 69.90% 76.04%
Weakly Taken, Update on Execute 80.78% 89.69%
Weakly Taken, Update on Retire 81.61% 89.33%
Weakly Not Taken, Update Speculatively 35.83% 27.42%
Weakly Not Taken, Update on Execute 62.46% 88.40%
Weakly Not Taken, Update on Retire 63.94% 87.70%

6



b) Testing the Local Predictor: Similar tests were done
for the local branch predictor. After analyzing the results
shown in [7, Tab. 3], we concluded that the best configuration
for our Local predictor was to initialize to weakly not taken,
with updating occurring on retire. Again, we noticed fairly
similar results for schemes updating on execute vs. schemes
updating on retire, although retire ultimately performed the
best.

c) Testing the Tournament Predictor: After finding the
most optimal configurations for our local and global predictors,
we implemented them both using a tournament selector. We
tested different sizes of our tournament selector as seen in
[7, Tab. 4] and noticed that the size of the tournament selector
did not influence the performance in the way that we expected.
Ultimately, we decided to use 32 lines, as it gave us the best
performance out of all schemes and did not impact our clock
period.

d) Evaluating the Tournament Predictor: It is evident
from the chart [7, Fig. 3] and table [7, Tab. 5] that the
tournament predictor was successful in integrating the local
and global predictors. In some programs, the local predic-
tor performed better than the global predictor, and in other
programs, the global predictor performed the best. The tour-
nament selector successfully balances these two predictors
and performs the best in both branch prediction accuracy and
instructions per cycle (IPC) in almost all cases.

B. Instruction Prefetching

We choose to prefetch at most 16 instructions in our Icache
module. This is mainly because the memory latency is 13
cycles so any value below 13 could result in an idle Icache.
For programs that have a lot of loops, the size of the prefetcher
should be small so that all instructions of the loop are still
in the cache when the instruction at the end of the loop is
executed. For programs that have a lot of if statements, the size
of the prefetcher should be large so that the branch target is
prefetched and can be used immediately. We chose the prefetch

TABLE III
PERFORMANCES OF DIFFERENT LOCAL PREDICTOR SCHEMES

Local Predictor Scheme Overall Large

Weakly Taken, Update on Execute 72.79% 88.57%
Weakly Taken, Update on Retire 72.80% 88.78%
Weakly Not Taken, Update on Execute 80.98% 88.56%
Weakly Not Taken, Update on Retire 81.15% 88.79%

TABLE IV
PERFORMANCES OF DIFFERENT TOURNAMENT PREDICTOR SIZES

Size Overall Large

16 Lines 84.31% 92.06%
32 Lines 84.00% 92.14%
64 Lines 83.85% 92.05%

TABLE V
BEST IPC OF EACH BRANCH PREDICTOR FOR LARGE PROGRAMS.

Program Local IPC Global IPC Tournament IPC

dft 0.6764 0.6959 0.6985
insertionsort 0.9979 1.0550 1.0636
sort search 0.7678 0.7407 0.7554
outer product 1.0171 1.0311 1.0311
matrix mult rec 1.1429 1.1856 1.2357
alexnet 0.9170 0.7792 0.9217

Fig. 3. Prediction accuracy of each branch predictor for large programs.

size to be 16 and we have an overall speedup of 2.587. This
speedup can be seen in [7, Fig. 4] where ”standard” is our
processor.

C. Non-blocking Data Cache

A non-blocking data cache can respond with an ACK to the
load buffer under a cache miss and deal with other requests
before it receives value from the memory. It improves the
performance when the program has large and continuous loads,
such as matrix mult rec. Implementing a non-blocking data
cache results in an overall speedup of 1.182. This can be seen
in [8, Fig. 5].

Fig. 4. Performance of instruction prefetching.

7



D. Early Tag Broadcast

Initially, we do CDB selection and broadcast, RS selection
and issue, and alu execution in one cycle, but it becomes our
critical path. Early tag broadcast allows the RS to know which
PRN numbers are going to be on CDB in the next cycle
and the result of CDB is removed from the input of the
priority selectors in the RS. It reduces the clock period by
0.24 ns. One alternative is to do CDB broadcast and issue in
different cycles, but there would be stalls between back-to-
back dependent instructions. The performance is much worse
when the program has a long dependency chain. Compared
with this option, early tag broadcast results in a speedup of
1.203 as shown in [8, Fig. 6].

E. Return Address Stack

For jalr instructions, we use the destination register to
differentiate between function calls and function returns. If
the instruction writes to architecture register 0, we view it as
a function return, otherwise it is a function call. For fib rec and
omegalul, BTB performs better than RAS because speculative
and squashed function calls and returns mess up the RAS. For
alexnet, fc forward, matrix mult rec, and outer product, the
implementation with RAS is slightly better. Overall we get a
speed up of 1.010 as shown in [8, Fig. 7].

Fig. 5. Performance of a non-blocking data cache.

Fig. 6. Performance of early tag broadcast.

F. Data Forwarding from Stores to Loads

In our processor, if the latest dependent store for a load
instruction is still in the store queue when the load is issued,
the store queue will forward the value to the load buffer. This
greatly improves the performance when the program often
stores to and then reads from the same address, which happens
a lot when we specify no optimization during the compilation.
By implementing the data forwarding, we have an overall
speedup of 1.153 visible in [8, Fig. 8].

G. Different Sizes of RS, ROB, LB, and SQ

The combination of RS Size = 16, ROB Size = 64, LB Size
= 8, and SQ Size = 8 is enough for not having structural
hazards that hurt performance. We can observe from the
graph that saxpy, insertionsort and outer product are slowed
down when RS Size = 8, ROB Size = 32, or LB Size = 4.
saxpy and matrix mult rec are slowed down when SQ Size
= 4. However, it is not the case that a larger buffer/queue
size is better. Since we are not able to choose the oldest
instruction in the RS to issue, a larger buffer/queue size will
let more later instructions come into the out-of-order system
and the instructions in the longest dependency chain can not
be issued one by one as soon as possible. The performance
for outer product is worse when RS Size increases from 16

Fig. 7. Performance of a return address stack.

Fig. 8. Performance of data forwarding from stores to loads.

8



to 32 or ROB Size increases from 64 to 128. The performance
for fib is worse when LB Size increases from 4 to 8. Overall
the performance with the parameter RS Size = 16, ROB Size
= 64, LB Size = 8 and SQ Size = 8 is the best. This data is
shown in [9, Fig. 9, 10, 11, 12].

H. Homework Testcases

The goal of Homework 4a [9, Code 2] was to achieve an
IPC greater than 1, which was achieved by having two groups
of instructions that have their own dependency branches. Lines
2 through 4 are one dependency branch, and lines 5 through 7
are another dependency branch. The goal of Homework 4b [9,
Code 3] was to achieve back-to-back execution of dependent
instructions, which was achieved by looping through instruc-
tions with subsequent dependencies.

I. Simultaneous Multithreading Performance Gain

We saw significant improvement from our single thread
to our multi-thread performance, as shown in [10, Tab. 6].
We saw an average speedup of 1.1895. Our non-SMT time
was calculated by immediately halting the second thread and
fetching from one program until completion. We then summed
the individual times for these programs and compared them
to the time spent when SMT was enabled. We decided to solely

Fig. 9. Performance of different RS sizes.

Fig. 10. Performance of different ROB sizes.

use statistics from our SMT processor instead of our single-
threaded processor because our SMT processor lacks some
performance optimizations that were implemented in the
single-threaded processor. We decided to run programs in
pairs, swapping each program’s thread in subsequent tests to

Fig. 11. Performance of different LB sizes.

Fig. 12. Performance of different SQ sizes.

1li x1, 0x32
2loop: addi x2, x1, 1
3addi x3, x2, 1
4addi x4, x3, 1
5addi x5, x1, 1
6addi x6, x5, 1
7addi x7, x6, 1
8addi x1, x1, -1
9bnez x1, loop
10wfi

Code 2. Homework 4a program code

1li x1, 0x0
2li a0, 0x100
3loop: addi x2, x1, 1
4addi x3, x2, 1
5addi x4, x3, 1
6addi x5, x4, 1
7addi x6, x5, 1
8addi x7, x6, 1
9addi x8, x7, 1
10addi x1, x8, 1
11ble x1, a0, loop
12wfi

Code 3. Homework 4b program code

9



TABLE VI
PERFORMANCE GAIN OF SMT

Thread 0 Thread 1 CPI Time (ns) Non-SMT Time (ns) Speedup

matrix mult rec mergesort 1.0429 303578.02 337295.42 1.1111
mergesort matrix mult rec 1.0423 303409.90 337295.42 1.1117
graph backtrack 1.5888 272186.28 346345.88 1.2725
backtrack graph 1.6162 276874.96 346345.88 1.2509
mergesort graph 1.4882 286541.86 360916.28 1.2596
graph mergesort 1.4797 284916.70 360916.28 1.2667
dft quicksort 1.2520 994719.34 1197602.82 1.2040
quicksort dft 1.2398 985015.08 1197602.82 1.2158
outer product insertionsort 1.1438 4979518.26 5349531.7 1.0743
insertionsort outer product 1.1295 4920900.42 5349531.7 1.0871
backtrack mergesort 1.4152 220620.14 289652.08 1.3129
mergesort backtrack 1.4354 223767.72 289652.08 1.2944
outer product dft 1.1009 4624729.02 5081268.22 1.0987
dft outer product 1.1057 4645006.16 5081268.22 1.0939

make sure that our prefetching behavior was evenly dis-
tributed for both programs. Since we saw nearly equivalent
performance for pairs of programs, we can conclude that our
processor is not biased towards one thread.

It should also be noted that with the ability to run two
programs, we must be very careful with the allocation of
stack space to each program. The table [10, Tab. 7] shows
the maximum stack depth of the larger test benches.

TABLE VII
STACK DEPTH OF RELEVANT PROGRAMS

Program Stack Depth (B)

matrix mult rec 44380
outer product 20480
dft 572
quicksort 572
insertionsort 492
mergesort 480
graph 300
priority queue 284
bfs 236

ACKNOWLEDGMENT

We would like to thank Professor Mark Brehob and the
rest of the EECS 470 staff — Mustafa Miyaziwala, Bradley
Schulz, and Ian Wrzesinksi — for their help throughout the
semester.

10


